Готовые решения задач Д7 динамика по термеху из методички Тарга С.М. 1989 
Теоретическая механика: Методические указания и контрольные задания для студентов-заочников машиностроительных, строительных, транспортных, приборостроительных специальностей высших учебных заведений Л И. Котова, Р. И. Надеева, С. М. Тарг и др.; Под редакцией С. М. Тарга — 4-е издание—М.: Высш. шк., 1989.— 111 с.
  
    
        
    	
	    
      Опубликовано nadi в Ср, 09/07/2014 - 17:38
    
        
        
        
    
    
      Тарг С.М. 1989 г
	Динамика Д7-54
	вариант 54
	рисунок 5 условие 4  http://reshuzadachi.ru/node/1371
	Задача Д7
	Барабан радиуса R весом Р имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом бэтта; кроме сил на барабан действует пара с моментом М, когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона альфа так, как показано на рисунках.
	Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. Хс = f(t) наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.
$1.25
$1.25
     
 
        
       
   
  
    
        
    	
	    
      Опубликовано nadi в Ср, 09/07/2014 - 17:36
    
        
        
        
    
    
      Тарг С.М. 1989 г
	Динамика Д7-53
	вариант 53
	рисунок 5 условие 3  http://reshuzadachi.ru/node/1371
	Задача Д7
	Барабан радиуса R весом Р имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом бэтта; кроме сил на барабан действует пара с моментом М, когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона альфа так, как показано на рисунках.
	Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. Хс = f(t) наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.
$1.25
$1.25
     
 
        
       
   
  
    
        
    	
	    
      Опубликовано nadi в Ср, 09/07/2014 - 17:34
    
        
        
        
    
    
      Тарг С.М. 1989 г
	Динамика Д7-52
	вариант 52
	рисунок 5 условие 2  http://reshuzadachi.ru/node/1371
	Задача Д7
	Барабан радиуса R весом Р имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом бэтта; кроме сил на барабан действует пара с моментом М, когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона альфа так, как показано на рисунках.
	Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. Хс = f(t) наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.
$1.25
$1.25